Mjerne jedinice količine podataka

Izvor: HrOpenWiki
Inačica od 14:16, 16. veljače 2009. koju je unio/unijela DoDo (razgovor | doprinosi)

(razl) ←Starija inačica | vidi trenutačnu inačicu (razl) | Novija inačica→ (razl)
Skoči na: orijentacija, traži

Da bi mogli izmjeriti količinu podataka koju pohranjujemo, prenosimo ili obrađujemo, zgodno je uvesti mjerne jedinice pomoću kojih si možemo predočiti količinu podataka.

Osnovne mjerne jedinice

Budući da današnja računala digitalna, ona obrađuju podatke koji su zabisani u obliku binarnih brojeva. Budući da binarni brojevi imaju samo dvije znamenke (0 i 1), svaku znamenku nazivamo bit (od engleskog BInary Digit). Prva digitalna računala su podatke obrađivala u "paketima" po 8 bita, pa je stoga za skupinu od 8 bita uvriježen naziv byte (čitaj bajt).

Izvedene mjerne jedinice

Ubrzo su računala imala mogućnost obrađivati veće količine podataka, a razvijala se i tehnologija pohrane podataka, te je postalo moguće obrađiavti i pohranjivati više tisuća bajtova. Bilo je potrebno uvesti novu mjernu jedinicu. Tada je uveden kilobajt (kB). Kilobajt je u početku predstavljao 1000 bajtova, no to se je pokazalo vrlo nespretnim jer je otežavalo preračunavanje prvim računalima. Naime, računalima je puno lakše raditi s brojevima koji su cjelobrojna potencija broja 2. Zato je ubrzo kilobajt definiran kao 1024 (210) bajtova.

IEC binary use
Name Symbol Base 2 Base 16 Base 10 Name Symbol
kibi Ki 210 162.5 400(16) ~103.01 1,024 kilo k/K
mebi Mi 220 165 10 0000(16) ~106.02 1,048,576 mega M
gibi Gi 230 167.5 4000 0000(16) ~109.03 1,073,741,824 giga G
tebi Ti 240 1610 100 0000 0000(16) ~1012.04 1,099,511,627,776 tera T
pebi Pi 250 1612.5 4 0000 0000 0000(16) ~1015.05 1,125,899,906,842,624 peta P
exbi Ei 260 1615 1000 0000 0000 0000(16) ~1018.06 1,152,921,504,606,846,976 exa E
zebi Zi 270 1617.5 40 0000 0000 0000 0000(16) ~1021.07 1,180,591,620,717,411,303,424 zetta Z
yobi Yi 280 1620 1 0000 0000 0000 0000 0000(16) ~1024.08 1,208,925,819,614,629,174,706,176 yotta Y

Approximate ratios between binary and decimal uses

As the order of magnitude increases, the percentage difference between the binary and decimal uses of the prefixes increases, from 2.4% (with the kilo prefix) to over 20% (with the yotta prefix). This makes differentiating between the two increasingly important as larger and larger data storage and transmission technologies are developed.

Name Bin ÷ Dec Dec ÷ Bin Percentage difference
kilobyte 1.024 0.976 +2.4% or −2.3%
megabyte 1.049 0.954 +4.9% or −4.6%
gigabyte 1.074 0.931 +7.4% or −6.9%
terabyte 1.100 0.909 +10.0% or −9.1%
petabyte 1.126 0.888 +12.6% or −11.2%
exabyte 1.153 0.867 +15.3% or −13.3%
zettabyte 1.181 0.847 +18.1% or −15.3%
yottabyte 1.209 0.827 +20.9% or −17.3%

Example: 300 GB (300×109 B) ≅ 279.4 GiB (279.4×10243 B)